开发者问题收集

未捕获(在承诺中)TypeError:无法读取 null 的属性“length”

2020-11-19
1725

在此处输入图片描述

我当时正在学习 TensorFlow.js - 使用迁移学习进行音频识别 教程。当我按下“train”按钮调用 train() 函数时,出现了如上错误。是我问题还是教程中有错误?

(我确实一步一步按照指南操作...并在最新版本的 chrome 中使用本地主机进行了测试)

第一个代码片段来自 index.js,第二个代码片段来自 index.html。

let recognizer;

function predictWord() {
 // Array of words that the recognizer is trained to recognize.
 const words = recognizer.wordLabels();
 recognizer.listen(({scores}) => {
   // Turn scores into a list of (score,word) pairs.
   scores = Array.from(scores).map((s, i) => ({score: s, word: words[i]}));
   // Find the most probable word.
   scores.sort((s1, s2) => s2.score - s1.score);
   document.querySelector('#console').textContent = scores[0].word;
 }, {probabilityThreshold: 0.75});
}

async function app() {
 recognizer = speechCommands.create('BROWSER_FFT');
 await recognizer.ensureModelLoaded();
 console.log("The pre-trained model is loaded.");
 //predictWord();
 buildModel();
 console.log("The model is built.");
}

app();

// One frame is ~23ms of audio.
const NUM_FRAMES = 3;
let examples = [];

function collect(label) {
 if (recognizer.isListening()) {
   return recognizer.stopListening();
 }
 if (label == null) {
   return;
 }
 recognizer.listen(async ({spectrogram: {frameSize, data}}) => {
   let vals = normalize(data.subarray(-frameSize * NUM_FRAMES));
   examples.push({vals, label});
   document.querySelector('#console').textContent =
       `${examples.length} examples collected`;
 }, {
   overlapFactor: 0.999,
   includeSpectrogram: true,
   invokeCallbackOnNoiseAndUnknown: true
 });
}

function normalize(x) {
 const mean = -100;
 const std = 10;
 return x.map(x => (x - mean) / std);
}

const INPUT_SHAPE = [NUM_FRAMES, 232, 1];
let model;

async function train() {
 toggleButtons(false);
 const ys = tf.oneHot(examples.map(e => e.label), 3);
 console.log("line one in train() is executed successfully.");
 const xsShape = [examples.length, ...INPUT_SHAPE];
 console.log("line two in train() is executed successfully.");
 const xs = tf.tensor(flatten(examples.map(e => e.vals)), xsShape);
 console.log("line three in train() is executed sucessfully.");

 console.log(examples);

 await model.fit(xs, ys, {
   batchSize: 16,
   epochs: 10,
   callbacks: {
     onEpochEnd: (epoch, logs) => {
       document.querySelector('#console').textContent =
           `Accuracy: ${(logs.acc * 100).toFixed(1)}% Epoch: ${epoch + 1}`;
     }
   }
 });

console.log("The training is done !");

 tf.dispose([xs, ys]);
 toggleButtons(true);
}

function buildModel() {
 model = tf.sequential();
 model.add(tf.layers.depthwiseConv2d({
   depthMultiplier: 8,
   kernelSize: [NUM_FRAMES, 3],
   activation: 'relu',
   inputShape: INPUT_SHAPE
 }));
 model.add(tf.layers.maxPooling2d({poolSize: [1, 2], strides: [2, 2]}));
 model.add(tf.layers.flatten());
 model.add(tf.layers.dense({units: 3, activation: 'softmax'}));
 const optimizer = tf.train.adam(0.01);
 model.compile({
   optimizer,
   loss: 'categoricalCrossentropy',
   metrics: ['accuracy']
 });
}

function toggleButtons(enable) {
 document.querySelectorAll('button').forEach(b => b.disabled = !enable);
}

function flatten(tensors) {
 const size = tensors[0].length;
 const result = new Float32Array(tensors.length * size);
 tensors.forEach((arr, i) => result.set(arr, i * size));
 return result;
}

//Call buildModel() when the app loads:

async function moveSlider(labelTensor) {
 const label = (await labelTensor.data())[0];
 document.getElementById('console').textContent = label;
 if (label == 2) {
   return;
 }
 let delta = 0.1;
 const prevValue = +document.getElementById('output').value;
 document.getElementById('output').value =
     prevValue + (label === 0 ? -delta : delta);
}

function listen() {
 if (recognizer.isListening()) {
   recognizer.stopListening();
   toggleButtons(true);
   document.getElementById('listen').textContent = 'Listen';
   return;
 }
 toggleButtons(false);
 document.getElementById('listen').textContent = 'Stop';
 document.getElementById('listen').disabled = false;

 recognizer.listen(async ({spectrogram: {frameSize, data}}) => {
   const vals = normalize(data.subarray(-frameSize * NUM_FRAMES));
   const input = tf.tensor(vals, [1, ...INPUT_SHAPE]);
   const probs = model.predict(input);
   const predLabel = probs.argMax(1);
   await moveSlider(predLabel);
   tf.dispose([input, probs, predLabel]);
 }, {
   overlapFactor: 0.999,
   includeSpectrogram: true,
   invokeCallbackOnNoiseAndUnknown: true
 });
}
<html>
  <head>
    <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs"></script>
    <script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/speech-commands">             </script>
  </head>
  <body>
    <button id="left" onmousedown="collect(0)" onmouseup="collect(null)">a</button>
    <button id="right" onmousedown="collect(1)" onmouseup="collect(null)">o</button>
    <button id="noise" onmousedown="collect(2)" onmouseup="collect(null)">Noise</button>
    <br/><br/>
    <button id="train" onclick="train()">Train</button>
    <br/><br/>
    <button id="listen" onclick="listen()">Listen</button>
    <input type="range" id="output" min="0" max="10" step="0.1">
    <div id="console"></div>
    <script src="index.js"></script>
  </body>
</html>
2个回答

该教程似乎是在 TensorFlow.js 2.0 发布之前编写的,但由于 jsDelivr 链接中未指定版本,因此它正在加载最新的 2.x 版本。

如果您指定 1.x 版本,它似乎可以工作,例如,您可以将:

<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs"></script>

替换为:

<script src="https://cdn.jsdelivr.net/npm/@tensorflow/[email protected]"></script>
bruz
2020-11-20

控制台上打印的错误应该会指出您运行了哪些代码行,但如果没有,则没有太多信息可供参考。

首先猜测,您似乎需要先运行 buildModel() 来初始化 model 变量。目前它被初始化为 undefined

Andy K
2020-11-20