开发者问题收集

如何制作函数装饰器并将它们链接在一起?

2009-04-11
664205

如何在 Python 中创建两个可以执行以下操作的装饰器?

@make_bold
@make_italic
def say():
   return "Hello"

调用 say() 应该返回:

"<b><i>Hello</i></b>"
3个回答

如果您不喜欢长篇解释,请参阅 Paolo Bergantino 的回答

装饰器基础知识

Python 的函数是对象

要理解装饰器,您必须首先了解函数在 Python 中是对象。这具有重要的意义。让我们通过一个简单的例子来看看为什么:

def shout(word="yes"):
    return word.capitalize()+"!"

print(shout())
# outputs : 'Yes!'

# As an object, you can assign the function to a variable like any other object 
scream = shout

# Notice we don't use parentheses: we are not calling the function,
# we are putting the function "shout" into the variable "scream".
# It means you can then call "shout" from "scream":

print(scream())
# outputs : 'Yes!'

# More than that, it means you can remove the old name 'shout',
# and the function will still be accessible from 'scream'

del shout
try:
    print(shout())
except NameError as e:
    print(e)
    #outputs: "name 'shout' is not defined"

print(scream())
# outputs: 'Yes!'

记住这一点。我们稍后会回到它。

Python 函数的另一个有趣属性是它们可以在另一个函数内定义!

def talk():

    # You can define a function on the fly in "talk" ...
    def whisper(word="yes"):
        return word.lower()+"..."

    # ... and use it right away!
    print(whisper())

# You call "talk", that defines "whisper" EVERY TIME you call it, then
# "whisper" is called in "talk". 
talk()
# outputs: 
# "yes..."

# But "whisper" DOES NOT EXIST outside "talk":

try:
    print(whisper())
except NameError as e:
    print(e)
    #outputs : "name 'whisper' is not defined"*
    #Python's functions are objects

函数引用

好的,还在这儿吗?现在是有趣的部分……

您已经看到函数是对象。因此,函数:

  • 可以分配给变量
  • 可以在另一个函数中定义

这意味着 一个函数可以 返回 另一个函数

def getTalk(kind="shout"):

    # We define functions on the fly
    def shout(word="yes"):
        return word.capitalize()+"!"

    def whisper(word="yes") :
        return word.lower()+"..."

    # Then we return one of them
    if kind == "shout":
        # We don't use "()", we are not calling the function,
        # we are returning the function object
        return shout  
    else:
        return whisper

# How do you use this strange beast?

# Get the function and assign it to a variable
talk = getTalk()      

# You can see that "talk" is here a function object:
print(talk)
#outputs : <function shout at 0xb7ea817c>

# The object is the one returned by the function:
print(talk())
#outputs : Yes!

# And you can even use it directly if you feel wild:
print(getTalk("whisper")())
#outputs : yes...

还有更多!

如果您可以 返回 一个函数,则可以将其作为参数传递:

def doSomethingBefore(func): 
    print("I do something before then I call the function you gave me")
    print(func())

doSomethingBefore(scream)
#outputs: 
#I do something before then I call the function you gave me
#Yes!

好了,您已经掌握了理解装饰器所需的一切。你看,装饰器是“包装器”,这意味着 它们让你在装饰的函数之前和之后执行代码 ,而无需修改函数本身。

手工制作的装饰器

如何手动完成:

# A decorator is a function that expects ANOTHER function as parameter
def my_shiny_new_decorator(a_function_to_decorate):

    # Inside, the decorator defines a function on the fly: the wrapper.
    # This function is going to be wrapped around the original function
    # so it can execute code before and after it.
    def the_wrapper_around_the_original_function():

        # Put here the code you want to be executed BEFORE the original function is called
        print("Before the function runs")

        # Call the function here (using parentheses)
        a_function_to_decorate()

        # Put here the code you want to be executed AFTER the original function is called
        print("After the function runs")

    # At this point, "a_function_to_decorate" HAS NEVER BEEN EXECUTED.
    # We return the wrapper function we have just created.
    # The wrapper contains the function and the code to execute before and after. It’s ready to use!
    return the_wrapper_around_the_original_function

# Now imagine you create a function you don't want to ever touch again.
def a_stand_alone_function():
    print("I am a stand alone function, don't you dare modify me")

a_stand_alone_function() 
#outputs: I am a stand alone function, don't you dare modify me

# Well, you can decorate it to extend its behavior.
# Just pass it to the decorator, it will wrap it dynamically in 
# any code you want and return you a new function ready to be used:

a_stand_alone_function_decorated = my_shiny_new_decorator(a_stand_alone_function)
a_stand_alone_function_decorated()
#outputs:
#Before the function runs
#I am a stand alone function, don't you dare modify me
#After the function runs

现在,你可能希望每次调用 a_stand_alone_function 时,都调用 a_stand_alone_function_decorated 。这很简单,只需用 my_shiny_new_decorator 返回的函数覆盖 a_stand_alone_function 即可:

a_stand_alone_function = my_shiny_new_decorator(a_stand_alone_function)
a_stand_alone_function()
#outputs:
#Before the function runs
#I am a stand alone function, don't you dare modify me
#After the function runs

# That’s EXACTLY what decorators do!

装饰器揭秘

前面的示例,使用装饰器语法:

@my_shiny_new_decorator
def another_stand_alone_function():
    print("Leave me alone")

another_stand_alone_function()  
#outputs:  
#Before the function runs
#Leave me alone
#After the function runs

是的,就这么简单。 @decorator 只是一个快捷方式:

another_stand_alone_function = my_shiny_new_decorator(another_stand_alone_function)

装饰器只是 装饰器设计模式 的 Python 变体。 Python 中嵌入了几种经典的设计模式来简化开发(如迭代器)。

当然,您可以累积装饰器:

def bread(func):
    def wrapper():
        print("</''''''\>")
        func()
        print("<\______/>")
    return wrapper

def ingredients(func):
    def wrapper():
        print("#tomatoes#")
        func()
        print("~salad~")
    return wrapper

def sandwich(food="--ham--"):
    print(food)

sandwich()
#outputs: --ham--
sandwich = bread(ingredients(sandwich))
sandwich()
#outputs:
#</''''''\>
# #tomatoes#
# --ham--
# ~salad~
#<\______/>

使用 Python 装饰器语法:

@bread
@ingredients
def sandwich(food="--ham--"):
    print(food)

sandwich()
#outputs:
#</''''''\>
# #tomatoes#
# --ham--
# ~salad~
#<\______/>

设置装饰器的顺序很重要:

@ingredients
@bread
def strange_sandwich(food="--ham--"):
    print(food)

strange_sandwich()
#outputs:
##tomatoes#
#</''''''\>
# --ham--
#<\______/>
# ~salad~

现在:回答问题...

作为结论,您可以轻松了解如何回答问题:

# The decorator to make it bold
def makebold(fn):
    # The new function the decorator returns
    def wrapper():
        # Insertion of some code before and after
        return "<b>" + fn() + "</b>"
    return wrapper

# The decorator to make it italic
def makeitalic(fn):
    # The new function the decorator returns
    def wrapper():
        # Insertion of some code before and after
        return "<i>" + fn() + "</i>"
    return wrapper

@makebold
@makeitalic
def say():
    return "hello"

print(say())
#outputs: <b><i>hello</i></b>

# This is the exact equivalent to 
def say():
    return "hello"
say = makebold(makeitalic(say))

print(say())
#outputs: <b><i>hello</i></b>

您现在可以开心地离开,或者再花点脑子看看装饰器的高级用法。


将装饰器提升到一个新的水平

将参数传递给装饰函数

# It’s not black magic, you just have to let the wrapper 
# pass the argument:

def a_decorator_passing_arguments(function_to_decorate):
    def a_wrapper_accepting_arguments(arg1, arg2):
        print("I got args! Look: {0}, {1}".format(arg1, arg2))
        function_to_decorate(arg1, arg2)
    return a_wrapper_accepting_arguments

# Since when you are calling the function returned by the decorator, you are
# calling the wrapper, passing arguments to the wrapper will let it pass them to 
# the decorated function

@a_decorator_passing_arguments
def print_full_name(first_name, last_name):
    print("My name is {0} {1}".format(first_name, last_name))
    
print_full_name("Peter", "Venkman")
# outputs:
#I got args! Look: Peter Venkman
#My name is Peter Venkman

装饰方法

一Python 的一个巧妙之处在于方法和函数实际上是相同的。唯一的区别是方法期望它们的第一个参数是对当前对象 ( self ) 的引用。

这意味着您可以用同样的方式为方法构建装饰器!只需记住将 self 考虑在内:

def method_friendly_decorator(method_to_decorate):
    def wrapper(self, lie):
        lie = lie - 3 # very friendly, decrease age even more :-)
        return method_to_decorate(self, lie)
    return wrapper
    
    
class Lucy(object):
    
    def __init__(self):
        self.age = 32
    
    @method_friendly_decorator
    def sayYourAge(self, lie):
        print("I am {0}, what did you think?".format(self.age + lie))
        
l = Lucy()
l.sayYourAge(-3)
#outputs: I am 26, what did you think?

如果您要创建通用装饰器(无论其参数如何,您都可以将其应用于任何函数或方法),则只需使用 *args, **kwargs

def a_decorator_passing_arbitrary_arguments(function_to_decorate):
    # The wrapper accepts any arguments
    def a_wrapper_accepting_arbitrary_arguments(*args, **kwargs):
        print("Do I have args?:")
        print(args)
        print(kwargs)
        # Then you unpack the arguments, here *args, **kwargs
        # If you are not familiar with unpacking, check:
        # http://www.saltycrane.com/blog/2008/01/how-to-use-args-and-kwargs-in-python/
        function_to_decorate(*args, **kwargs)
    return a_wrapper_accepting_arbitrary_arguments

@a_decorator_passing_arbitrary_arguments
def function_with_no_argument():
    print("Python is cool, no argument here.")

function_with_no_argument()
#outputs
#Do I have args?:
#()
#{}
#Python is cool, no argument here.

@a_decorator_passing_arbitrary_arguments
def function_with_arguments(a, b, c):
    print(a, b, c)
    
function_with_arguments(1,2,3)
#outputs
#Do I have args?:
#(1, 2, 3)
#{}
#1 2 3 
 
@a_decorator_passing_arbitrary_arguments
def function_with_named_arguments(a, b, c, platypus="Why not ?"):
    print("Do {0}, {1} and {2} like platypus? {3}".format(a, b, c, platypus))

function_with_named_arguments("Bill", "Linus", "Steve", platypus="Indeed!")
#outputs
#Do I have args ? :
#('Bill', 'Linus', 'Steve')
#{'platypus': 'Indeed!'}
#Do Bill, Linus and Steve like platypus? Indeed!

class Mary(object):
    
    def __init__(self):
        self.age = 31
    
    @a_decorator_passing_arbitrary_arguments
    def sayYourAge(self, lie=-3): # You can now add a default value
        print("I am {0}, what did you think?".format(self.age + lie))

m = Mary()
m.sayYourAge()
#outputs
# Do I have args?:
#(<__main__.Mary object at 0xb7d303ac>,)
#{}
#I am 28, what did you think?

将参数传递给装饰器

太好了,现在您如何看待将参数传递给装饰器本身?

这可能会有些扭曲,因为装饰器必须接受函数作为参数。因此,您不能将装饰函数的参数直接传递给装饰器。

在匆忙找到解决方案之前,让我们写一个小提醒:

# Decorators are ORDINARY functions
def my_decorator(func):
    print("I am an ordinary function")
    def wrapper():
        print("I am function returned by the decorator")
        func()
    return wrapper

# Therefore, you can call it without any "@"

def lazy_function():
    print("zzzzzzzz")

decorated_function = my_decorator(lazy_function)
#outputs: I am an ordinary function
            
# It outputs "I am an ordinary function", because that’s just what you do:
# calling a function. Nothing magic.

@my_decorator
def lazy_function():
    print("zzzzzzzz")
    
#outputs: I am an ordinary function

完全一样。调用了“ my_decorator ”。因此,当您 @my_decorator 时,您是在告诉 Python 调用“由变量“ my_decorator ”标记的函数”。

这很重要!您给出的标签可以直接指向装饰器 — 或者不

让我们变得邪恶。☺

def decorator_maker():
    
    print("I make decorators! I am executed only once: "
          "when you make me create a decorator.")
            
    def my_decorator(func):
        
        print("I am a decorator! I am executed only when you decorate a function.")
               
        def wrapped():
            print("I am the wrapper around the decorated function. "
                  "I am called when you call the decorated function. "
                  "As the wrapper, I return the RESULT of the decorated function.")
            return func()
        
        print("As the decorator, I return the wrapped function.")
        
        return wrapped
    
    print("As a decorator maker, I return a decorator")
    return my_decorator
            
# Let’s create a decorator. It’s just a new function after all.
new_decorator = decorator_maker()       
#outputs:
#I make decorators! I am executed only once: when you make me create a decorator.
#As a decorator maker, I return a decorator

# Then we decorate the function
            
def decorated_function():
    print("I am the decorated function.")
   
decorated_function = new_decorator(decorated_function)
#outputs:
#I am a decorator! I am executed only when you decorate a function.
#As the decorator, I return the wrapped function
     
# Let’s call the function:
decorated_function()
#outputs:
#I am the wrapper around the decorated function. I am called when you call the decorated function.
#As the wrapper, I return the RESULT of the decorated function.
#I am the decorated function.

这里没有什么意外。

让我们做完全相同的事情,但跳过所有令人讨厌的中间变量:

def decorated_function():
    print("I am the decorated function.")
decorated_function = decorator_maker()(decorated_function)
#outputs:
#I make decorators! I am executed only once: when you make me create a decorator.
#As a decorator maker, I return a decorator
#I am a decorator! I am executed only when you decorate a function.
#As the decorator, I return the wrapped function.

# Finally:
decorated_function()    
#outputs:
#I am the wrapper around the decorated function. I am called when you call the decorated function.
#As the wrapper, I return the RESULT of the decorated function.
#I am the decorated function.

让我们让它 更短

@decorator_maker()
def decorated_function():
    print("I am the decorated function.")
#outputs:
#I make decorators! I am executed only once: when you make me create a decorator.
#As a decorator maker, I return a decorator
#I am a decorator! I am executed only when you decorate a function.
#As the decorator, I return the wrapped function.

#Eventually: 
decorated_function()    
#outputs:
#I am the wrapper around the decorated function. I am called when you call the decorated function.
#As the wrapper, I return the RESULT of the decorated function.
#I am the decorated function.

嘿,你看到了吗?我们使用了带有“ @ ”语法的函数调用! :-)

那么,回到带参数的装饰器。如果我们可以使用函数动态生成装饰器,我们可以将参数传递给该函数,对吗?

def decorator_maker_with_arguments(decorator_arg1, decorator_arg2):
    
    print("I make decorators! And I accept arguments: {0}, {1}".format(decorator_arg1, decorator_arg2))
            
    def my_decorator(func):
        # The ability to pass arguments here is a gift from closures.
        # If you are not comfortable with closures, you can assume it’s ok,
        # or read: https://stackoverflow.com/questions/13857/can-you-explain-closures-as-they-relate-to-python
        print("I am the decorator. Somehow you passed me arguments: {0}, {1}".format(decorator_arg1, decorator_arg2))
               
        # Don't confuse decorator arguments and function arguments!
        def wrapped(function_arg1, function_arg2) :
            print("I am the wrapper around the decorated function.\n"
                  "I can access all the variables\n"
                  "\t- from the decorator: {0} {1}\n"
                  "\t- from the function call: {2} {3}\n"
                  "Then I can pass them to the decorated function"
                  .format(decorator_arg1, decorator_arg2,
                          function_arg1, function_arg2))
            return func(function_arg1, function_arg2)
        
        return wrapped
    
    return my_decorator

@decorator_maker_with_arguments("Leonard", "Sheldon")
def decorated_function_with_arguments(function_arg1, function_arg2):
    print("I am the decorated function and only knows about my arguments: {0}"
           " {1}".format(function_arg1, function_arg2))
          
decorated_function_with_arguments("Rajesh", "Howard")
#outputs:
#I make decorators! And I accept arguments: Leonard Sheldon
#I am the decorator. Somehow you passed me arguments: Leonard Sheldon
#I am the wrapper around the decorated function. 
#I can access all the variables 
#   - from the decorator: Leonard Sheldon 
#   - from the function call: Rajesh Howard 
#Then I can pass them to the decorated function
#I am the decorated function and only knows about my arguments: Rajesh Howard

这就是:带参数的装饰器。参数可以设置为变量:

c1 = "Penny"
c2 = "Leslie"

@decorator_maker_with_arguments("Leonard", c1)
def decorated_function_with_arguments(function_arg1, function_arg2):
    print("I am the decorated function and only knows about my arguments:"
           " {0} {1}".format(function_arg1, function_arg2))

decorated_function_with_arguments(c2, "Howard")
#outputs:
#I make decorators! And I accept arguments: Leonard Penny
#I am the decorator. Somehow you passed me arguments: Leonard Penny
#I am the wrapper around the decorated function. 
#I can access all the variables 
#   - from the decorator: Leonard Penny 
#   - from the function call: Leslie Howard 
#Then I can pass them to the decorated function
#I am the decorated function and only know about my arguments: Leslie Howard

如您所见,您可以使用此技巧像任何函数一样将参数传递给装饰器。如果您愿意,您甚至可以使用 *args, **kwargs 。但请记住,装饰器 仅调用一次 。就在 Python 导入脚本时。您无法在之后动态设置参数。当您执行“import x”时, 该函数已被修饰 ,因此您无法更改任何内容。


让我们练习:修饰装饰器

好的,作为奖励,我将为您提供一个代码片段,使任何装饰器都可以接受任何参数。毕竟,为了接受参数,我们使用另一个函数创建了装饰器。

我们包装了装饰器。

我们最近还看到了包装函数的其他内容吗?

哦,是的,装饰器!

让我们找点乐子,为装饰器编写一个装饰器:

def decorator_with_args(decorator_to_enhance):
    """ 
    This function is supposed to be used as a decorator.
    It must decorate an other function, that is intended to be used as a decorator.
    Take a cup of coffee.
    It will allow any decorator to accept an arbitrary number of arguments,
    saving you the headache to remember how to do that every time.
    """
    
    # We use the same trick we did to pass arguments
    def decorator_maker(*args, **kwargs):
       
        # We create on the fly a decorator that accepts only a function
        # but keeps the passed arguments from the maker.
        def decorator_wrapper(func):
       
            # We return the result of the original decorator, which, after all, 
            # IS JUST AN ORDINARY FUNCTION (which returns a function).
            # Only pitfall: the decorator must have this specific signature or it won't work:
            return decorator_to_enhance(func, *args, **kwargs)
        
        return decorator_wrapper
    
    return decorator_maker
       

它可以按如下方式使用:

# You create the function you will use as a decorator. And stick a decorator on it :-)
# Don't forget, the signature is "decorator(func, *args, **kwargs)"
@decorator_with_args 
def decorated_decorator(func, *args, **kwargs): 
    def wrapper(function_arg1, function_arg2):
        print("Decorated with {0} {1}".format(args, kwargs))
        return func(function_arg1, function_arg2)
    return wrapper
    
# Then you decorate the functions you wish with your brand new decorated decorator.

@decorated_decorator(42, 404, 1024)
def decorated_function(function_arg1, function_arg2):
    print("Hello {0} {1}".format(function_arg1, function_arg2))

decorated_function("Universe and", "everything")
#outputs:
#Decorated with (42, 404, 1024) {}
#Hello Universe and everything

# Whoooot!

我知道,上次你有这种感觉是在听了一个人说:“在理解递归之前,你必须先理解递归”之后。但是现在,你是不是对掌握了这些感到很满意?


最佳实践:装饰器

  • 装饰器是在 Python 2.4 中引入的,因此请确保你的代码可以在 >= 2.4 上运行。
  • 装饰器会减慢函数调用速度。请记住这一点。
  • 你无法取消函数的装饰。 (有一些技巧可以创建可以删除的装饰器,但没有人使用它们。)因此,一旦函数被装饰,它就会被装饰为 所有代码
  • 装饰器包装函数,这会使它们难以调试。(这在 Python >= 2.5 中有所改善;见下文。)

functools 模块是在 Python 2.5 中引入的。它包括函数 functools.wraps() ,它将被装饰函数的名称、模块和文档字符串复制到其包装器中。

(有趣的事实: functools.wraps() 是一个装饰器!☺)

# For debugging, the stacktrace prints you the function __name__
def foo():
    print("foo")
    
print(foo.__name__)
#outputs: foo
    
# With a decorator, it gets messy    
def bar(func):
    def wrapper():
        print("bar")
        return func()
    return wrapper

@bar
def foo():
    print("foo")

print(foo.__name__)
#outputs: wrapper

# "functools" can help for that

import functools

def bar(func):
    # We say that "wrapper", is wrapping "func"
    # and the magic begins
    @functools.wraps(func)
    def wrapper():
        print("bar")
        return func()
    return wrapper

@bar
def foo():
    print("foo")

print(foo.__name__)
#outputs: foo

装饰器有什么用处?

现在最大的问题是: 我可以用装饰器做什么?

看起来很酷很强大,但有个实际的例子就更好了。好吧,有 1000 种可能性。经典用途是从外部库扩展函数行为(您无法修改它),或用于调试(您不想修改它,因为它是临时的)。

您可以使用它们以 DRY 的方式扩展多个函数,如下所示:

def benchmark(func):
    """
    A decorator that prints the time a function takes
    to execute.
    """
    import time
    def wrapper(*args, **kwargs):
        t = time.clock()
        res = func(*args, **kwargs)
        print("{0} {1}".format(func.__name__, time.clock()-t))
        return res
    return wrapper


def logging(func):
    """
    A decorator that logs the activity of the script.
    (it actually just prints it, but it could be logging!)
    """
    def wrapper(*args, **kwargs):
        res = func(*args, **kwargs)
        print("{0} {1} {2}".format(func.__name__, args, kwargs))
        return res
    return wrapper


def counter(func):
    """
    A decorator that counts and prints the number of times a function has been executed
    """
    def wrapper(*args, **kwargs):
        wrapper.count = wrapper.count + 1
        res = func(*args, **kwargs)
        print("{0} has been used: {1}x".format(func.__name__, wrapper.count))
        return res
    wrapper.count = 0
    return wrapper

@counter
@benchmark
@logging
def reverse_string(string):
    return str(reversed(string))

print(reverse_string("Able was I ere I saw Elba"))
print(reverse_string("A man, a plan, a canoe, pasta, heros, rajahs, a coloratura, maps, snipe, percale, macaroni, a gag, a banana bag, a tan, a tag, a banana bag again (or a camel), a crepe, pins, Spam, a rut, a Rolo, cash, a jar, sore hats, a peon, a canal: Panama!"))

#outputs:
#reverse_string ('Able was I ere I saw Elba',) {}
#wrapper 0.0
#wrapper has been used: 1x 
#ablE was I ere I saw elbA
#reverse_string ('A man, a plan, a canoe, pasta, heros, rajahs, a coloratura, maps, snipe, percale, macaroni, a gag, a banana bag, a tan, a tag, a banana bag again (or a camel), a crepe, pins, Spam, a rut, a Rolo, cash, a jar, sore hats, a peon, a canal: Panama!',) {}
#wrapper 0.0
#wrapper has been used: 2x
#!amanaP :lanac a ,noep a ,stah eros ,raj a ,hsac ,oloR a ,tur a ,mapS ,snip ,eperc a ,)lemac a ro( niaga gab ananab a ,gat a ,nat a ,gab ananab a ,gag a ,inoracam ,elacrep ,epins ,spam ,arutaroloc a ,shajar ,soreh ,atsap ,eonac a ,nalp a ,nam A

当然,装饰器的好处在于您可以立即在几乎任何东西上使用它们而无需重写。DRY,我说:

@counter
@benchmark
@logging
def get_random_futurama_quote():
    from urllib import urlopen
    result = urlopen("http://subfusion.net/cgi-bin/quote.pl?quote=futurama").read()
    try:
        value = result.split("<br><b><hr><br>")[1].split("<br><br><hr>")[0]
        return value.strip()
    except:
        return "No, I'm ... doesn't!"

    
print(get_random_futurama_quote())
print(get_random_futurama_quote())

#outputs:
#get_random_futurama_quote () {}
#wrapper 0.02
#wrapper has been used: 1x
#The laws of science be a harsh mistress.
#get_random_futurama_quote () {}
#wrapper 0.01
#wrapper has been used: 2x
#Curse you, merciful Poseidon!

Python 本身提供了几个装饰器: propertystaticmethod 等。

  • Django 使用装饰器来管理缓存和查看权限。
  • Twisted 伪造内联异步函数调用。

这真的是一个很大的游乐场。

2009-10-20

查看 文档 ,了解装饰器的工作原理。以下是您所要求的内容:

from functools import wraps

def makebold(fn):
    @wraps(fn)
    def wrapper(*args, **kwargs):
        return "<b>" + fn(*args, **kwargs) + "</b>"
    return wrapper

def makeitalic(fn):
    @wraps(fn)
    def wrapper(*args, **kwargs):
        return "<i>" + fn(*args, **kwargs) + "</i>"
    return wrapper

@makebold
@makeitalic
def hello():
    return "hello world"

@makebold
@makeitalic
def log(s):
    return s

print hello()        # returns "<b><i>hello world</i></b>"
print hello.__name__ # with functools.wraps() this returns "hello"
print log('hello')   # returns "<b><i>hello</i></b>"
Paolo Bergantino
2009-04-11

或者,您可以编写一个工厂函数,该函数返回一个装饰器,该装饰器将装饰函数的返回值包装在传递给工厂函数的标记中。例如:

from functools import wraps

def wrap_in_tag(tag):
    def factory(func):
        @wraps(func)
        def decorator():
            return '<%(tag)s>%(rv)s</%(tag)s>' % (
                {'tag': tag, 'rv': func()})
        return decorator
    return factory

这使您能够编写:

@wrap_in_tag('b')
@wrap_in_tag('i')
def say():
    return 'hello'

makebold = wrap_in_tag('b')
makeitalic = wrap_in_tag('i')

@makebold
@makeitalic
def say():
    return 'hello'

我个人会以不同的方式编写装饰器:

from functools import wraps

def wrap_in_tag(tag):
    def factory(func):
        @wraps(func)
        def decorator(val):
            return func('<%(tag)s>%(val)s</%(tag)s>' %
                        {'tag': tag, 'val': val})
        return decorator
    return factory

这将产生:

@wrap_in_tag('b')
@wrap_in_tag('i')
def say(val):
    return val
say('hello')

不要忘记装饰器语法的简写结构:

say = wrap_in_tag('b')(wrap_in_tag('i')(say)))
2009-04-11