开发者问题收集

as_list() 未在未知的 TensorShape 上定义

2019-11-19
18828

**更新 实施@jdehesa 答案后:我的代码如下所示:

from __future__ import absolute_import, division, print_function, unicode_literals
import tensorflow as tf

import numpy as np
import matplotlib.pyplot as plt
import os
import PIL as pil
from tensorflow import feature_column
from tensorflow_core.python.platform.flags import FLAGS

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'


def print_type(name , x):
    print(" {} type = {}".format(name, type(x)))


def _bytes_feature(value):
    """Returns a bytes_list from a string / byte."""
    if isinstance(value, type(tf.constant(0))):
        value = value.numpy() # BytesList won't unpack a string from an EagerTensor.
    return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))


def _float_feature(value):
    if not isinstance(value, np.ndarray):
        value = [value]
    """Returns a float_list from a float / double."""
    return tf.train.Feature(float_list=tf.train.FloatList(value=value))


def _int64_feature(value):
    """Returns an int64_list from a bool / enum / int / uint."""
    if not isinstance(value, np.ndarray):
        value = [value]
    return tf.train.Feature(int64_list=tf.train.Int64List(value=value))


def encode_example(arr, label):
    shape = arr.shape
    feature = {
        'height': _int64_feature(shape[0]),
        'width': _int64_feature(shape[1]),
        'label': _int64_feature(label),
        'image_raw': _bytes_feature(arr.flatten().tobytes()),
    }
    # print("Encoding type {}".format(type(feature['image_raw'])))
    return tf.train.Example(features=tf.train.Features(feature=feature))


def decode_example(serialized_example):
    # Create a dictionary describing the features.
    image_feature_description = {
        'height': tf.io.FixedLenFeature([], tf.int64),
        'width': tf.io.FixedLenFeature([], tf.int64),
        'label': tf.io.FixedLenFeature([], tf.int64),
        'image_raw': tf.io.FixedLenFeature([], tf.string),
    }
    example = tf.io.parse_single_example(serialized_example, image_feature_description)
    return example


def map_example(height, width, image_raw, label):
    # Assumes little endian decoding, pass little_endian=False for big endian
    image_data = tf.io.decode_raw(image_raw, tf.uint8)
    image_data = tf.reshape(image_data, [height, width])
    return image_data, label



def make_dataset(partition):
    files = tf.data.Dataset.list_files("images_" + partition + "*.tfrecord")
    dataset = tf.data.TFRecordDataset(files)
    # dataset = dataset.shuffle(buffer_size=FLAGS.shuffle_buffer_size)
    dataset = dataset.map(decode_example)
    dataset = dataset.map(
        lambda x: map_example(x['height'], x['width'], x['image_raw'], x['label']))
    # dataset = dataset.batch(batch_size=FLAGS.batch_size)
    return dataset



def write_examples_to_record_file(file_name, x , y):
    with tf.io.TFRecordWriter(file_name) as writer:
        for i in range(len(x)):
            tf_example = encode_example(x[i], y[i])
            writer.write(tf_example.SerializeToString())


mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, y_train, x_test, y_test = x_train[:100], y_train[:100], x_test[:100], y_test[:100]
# x_train, x_test = x_train.astype(np.int8), x_test.astype(np.int8)

write_examples_to_record_file('images_train.tfrecord', x_train, y_train)
# write_examples_to_record_file('images_test.tfrecord', x_test, y_test)
train_dataset = make_dataset("train")
# test_dataset = make_dataset("test")

it = iter(train_dataset)
r = next(it)
print_type("r",r)
(x,y) = r
print_type("X", x)
print_type("Y", y)
print("x is" , x)
print("y is" , y)
print("x shape is" , x.shape())
print("y shape is" , y.shape())
# print(next(it))

# for r,label in next(it):
#     print(repr(r))
#     print("feature shape = {}".format(r.shape.as_list()))
#     print("label shape = {}".format(label.shape.as_list()))


# feature_column = [tf.feature_column.numeric_column(key='image', shape=(28,28))]
# feature_layer = tf.keras.layers.DenseFeatures(feature_column)
#

# it = iter(train_dataset)
model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(input_shape=[28,28]),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dropout(0.2),
    tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.fit(train_dataset,  epochs=5)
# model.evaluate(test_dataset, verbose=2)

但现在错误不同了,我认为这是原始问题错误的原因,即获取 next() 元组的 x、y 分量的形状存在问题:

2019-11-19 11:11:54.540221: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'cudart64_100.dll'; dlerror: cudart64_100.dll not found
2019-11-19 11:11:56.763955: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'nvcuda.dll'; dlerror: nvcuda.dll not found
2019-11-19 11:11:56.764410: E tensorflow/stream_executor/cuda/cuda_driver.cc:318] failed call to cuInit: UNKNOWN ERROR (303)
2019-11-19 11:11:56.767167: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:169] retrieving CUDA diagnostic information for host: szclu-dvcasa027
2019-11-19 11:11:56.767572: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:176] hostname: szclu-dvcasa027
2019-11-19 11:11:56.768026: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
WARNING:tensorflow:Entity <function decode_example at 0x000002A67F5EE438> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: No module named 'tensorflow_core.estimator'
WARNING:tensorflow:Entity <function make_dataset.<locals>.<lambda> at 0x000002A67F61C0D8> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: No module named 'tensorflow_core.estimator'
 r type = <class 'tuple'>
 X type = <class 'tensorflow.python.framework.ops.EagerTensor'>
 Y type = <class 'tensorflow.python.framework.ops.EagerTensor'>
x is tf.Tensor(
[[  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
    0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
    0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
    0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
    0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
    0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   3  18  18  18 126 136
  175  26 166 255 247 127   0   0   0   0]
 [  0   0   0   0   0   0   0   0  30  36  94 154 170 253 253 253 253 253
  225 172 253 242 195  64   0   0   0   0]
 [  0   0   0   0   0   0   0  49 238 253 253 253 253 253 253 253 253 251
   93  82  82  56  39   0   0   0   0   0]
 [  0   0   0   0   0   0   0  18 219 253 253 253 253 253 198 182 247 241
    0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0  80 156 107 253 253 205  11   0  43 154
    0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0  14   1 154 253  90   0   0   0   0
    0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0 139 253 190   2   0   0   0
    0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0  11 190 253  70   0   0   0
    0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0  35 241 225 160 108   1
    0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0  81 240 253 253 119
   25   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0  45 186 253 253
  150  27   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  16  93 252
  253 187   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 249
  253 249  64   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0  46 130 183 253
  253 207   2   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0  39 148 229 253 253 253
  250 182   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0  24 114 221 253 253 253 253 201
   78   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0  23  66 213 253 253 253 253 198  81   2
    0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0  18 171 219 253 253 253 253 195  80   9   0   0
    0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0  55 172 226 253 253 253 253 244 133  11   0   0   0   0
    0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0 136 253 253 253 212 135 132  16   0   0   0   0   0   0
    0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
    0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
    0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
    0   0   0   0   0   0   0   0   0   0]], shape=(28, 28), dtype=uint8)
y is tf.Tensor(5, shape=(), dtype=int64)
Traceback (most recent call last):
  File "<input>", line 1, in <module>
  File "C:\Users\me\.IntelliJIdea2019.3\config\plugins\python\helpers\pydev\_pydev_bundle\pydev_umd.py", line 197, in runfile
    pydev_imports.execfile(filename, global_vars, local_vars)  # execute the script
  File "C:\Users\me\.IntelliJIdea2019.3\config\plugins\python\helpers\pydev\_pydev_imps\_pydev_execfile.py", line 18, in execfile
    exec(compile(contents+"\n", file, 'exec'), glob, loc)
  File "C:/data/projects/cludeeplearning/train_model_so.py", line 108, in <module>
    print("x shape is" , x.shape())
TypeError: 'TensorShape' object is not callable

======================================================================================== 我正在尝试使用 tfrecords,因为最终我们将有大量数据存储在多个文件中,而这些文件可能无法装入内存。

这个 POC 的基本思想是从 mnist 数据集加载数据,将其保存在 tfrecrod 文件中tf.example,使用 tfrecorddataset 从 tfrecord 加载它并训练模型。

这是我的代码示例:

from __future__ import absolute_import, division, print_function, unicode_literals
import tensorflow as tf

import numpy as np
import matplotlib.pyplot as plt
import os
import PIL as pil
from tensorflow import feature_column
from tensorflow_core.python.platform.flags import FLAGS

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'


def _bytes_feature(value):
    """Returns a bytes_list from a string / byte."""
    if isinstance(value, type(tf.constant(0))):
        value = value.numpy() # BytesList won't unpack a string from an EagerTensor.
    return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))


def _float_feature(value):
    if not isinstance(value, np.ndarray):
        value = [value]
    """Returns a float_list from a float / double."""
    return tf.train.Feature(float_list=tf.train.FloatList(value=value))


def _int64_feature(value):
    """Returns an int64_list from a bool / enum / int / uint."""
    if not isinstance(value, np.ndarray):
        value = [value]
    return tf.train.Feature(int64_list=tf.train.Int64List(value=value))


def encode_example(arr, label):
    shape = arr.shape

    feature = {
        'height': _int64_feature(shape[0]),
        'width': _int64_feature(shape[1]),
        'label': _int64_feature(label),
        'image_raw': _bytes_feature(arr.flatten().tobytes()),
    }
    # print("Encoding type {}".format(type(feature['image_raw'])))
    return tf.train.Example(features=tf.train.Features(feature=feature))


def decode_example(serialized_example):
    # Create a dictionary describing the features.
    image_feature_description = {
        'height': tf.io.FixedLenFeature([], tf.int64),
        'width': tf.io.FixedLenFeature([], tf.int64),
        'label': tf.io.FixedLenFeature([], tf.int64),
        'image_raw': tf.io.FixedLenFeature([], tf.string),
    }
    example = tf.io.parse_single_example(serialized_example, image_feature_description)
    return example


def map_example(height, width, image_raw, label):
    image_data = np.frombuffer(image_raw.numpy(), dtype=np.dtype('int64'))
    image_data = tf.reshape(image_data, [height.numpy(), width.numpy()])
    # image_data.set_shape([28,28])
    label = tf.constant([label.numpy()], tf.int64)
    return image_data, label


def make_dataset(partition):
    files = tf.data.Dataset.list_files("images_" + partition + "*.tfrecord")
    dataset = tf.data.TFRecordDataset(files)
    # dataset = dataset.shuffle(buffer_size=FLAGS.shuffle_buffer_size)
    dataset = dataset.map(decode_example)
    dataset = dataset.map(lambda x: tf.py_function(func=map_example, inp=[x['height'], x['width'], x['image_raw'], x['label']], Tout=(tf.int64, tf.int64)))
    # dataset = dataset.batch(batch_size=FLAGS.batch_size)
    return dataset


def write_examples_to_record_file(file_name, x , y):
    with tf.io.TFRecordWriter(file_name) as writer:
        for i in range(len(x)):
            tf_example = encode_example(x[i], y[i])
            writer.write(tf_example.SerializeToString())


mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, y_train, x_test, y_test = x_train[:100], y_train[:100], x_test[:100], y_test[:100]
x_train, x_test = x_train / 255.0, x_test / 255.0
write_examples_to_record_file('images_train.tfrecord', x_train, y_train)
# write_examples_to_record_file('images_test.tfrecord', x_test, y_test)
train_dataset = make_dataset("train")
# test_dataset = make_dataset("test")

for r in train_dataset.take(1):
    print(r[0].shape.as_list())
    print(r[1])


# feature_column = [tf.feature_column.numeric_column(key='image', shape=(28,28))]
# feature_layer = tf.keras.layers.DenseFeatures(feature_column)
#
model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(input_shape=[28,28,1]),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dropout(0.2),
    tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.fit(train_dataset,  epochs=5)
# model.evaluate(test_dataset, verbose=2)

在开始训练之前,我收到以下错误,知道为什么它不起作用吗?

2019-11-19 06:31:21.067987: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'cudart64_100.dll'; dlerror: cudart64_100.dll not found
2019-11-19 06:31:23.315270: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'nvcuda.dll'; dlerror: nvcuda.dll not found
2019-11-19 06:31:23.315617: E tensorflow/stream_executor/cuda/cuda_driver.cc:318] failed call to cuInit: UNKNOWN ERROR (303)
2019-11-19 06:31:23.320751: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:169] retrieving CUDA diagnostic information for host: szclu-dvcasa027
2019-11-19 06:31:23.321132: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:176] hostname: szclu-dvcasa027
2019-11-19 06:31:23.321927: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
WARNING:tensorflow:Entity <function decode_example at 0x00000250EE94A1F8> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: No module named 'tensorflow_core.estimator'
WARNING:tensorflow:Entity <function make_dataset.<locals>.<lambda> at 0x00000250EE94A438> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: No module named 'tensorflow_core.estimator'
feature shape = [28, 28]
label shape = [1]
Epoch 1/5
Traceback (most recent call last):
  File "C:/data/projects/cludeeplearning/train_model.py", line 110, in <module>
    model.fit(train_dataset,  epochs=5)
  File "C:\Users\me\AppData\Local\Continuum\anaconda3\envs\deeplearning\lib\site-packages\tensorflow_core\python\keras\engine\training.py", line 728, in fit

      1/Unknown - 0s 13ms/step
      1/Unknown - 0s 13ms/step    use_multiprocessing=use_multiprocessing)
  File "C:\Users\me\AppData\Local\Continuum\anaconda3\envs\deeplearning\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py", line 324, in fit
    total_epochs=epochs)
  File "C:\Users\me\AppData\Local\Continuum\anaconda3\envs\deeplearning\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py", line 123, in run_one_epoch
    batch_outs = execution_function(iterator)
  File "C:\Users\me\AppData\Local\Continuum\anaconda3\envs\deeplearning\lib\site-packages\tensorflow_core\python\keras\engine\training_v2_utils.py", line 86, in execution_function
    distributed_function(input_fn))
  File "C:\Users\me\AppData\Local\Continuum\anaconda3\envs\deeplearning\lib\site-packages\tensorflow_core\python\eager\def_function.py", line 457, in __call__
    result = self._call(*args, **kwds)
  File "C:\Users\me\AppData\Local\Continuum\anaconda3\envs\deeplearning\lib\site-packages\tensorflow_core\python\eager\def_function.py", line 503, in _call
    self._initialize(args, kwds, add_initializers_to=initializer_map)
  File "C:\Users\me\AppData\Local\Continuum\anaconda3\envs\deeplearning\lib\site-packages\tensorflow_core\python\eager\def_function.py", line 408, in _initialize
    *args, **kwds))
  File "C:\Users\me\AppData\Local\Continuum\anaconda3\envs\deeplearning\lib\site-packages\tensorflow_core\python\eager\function.py", line 1848, in _get_concrete_function_internal_garbage_collected
    graph_function, _, _ = self._maybe_define_function(args, kwargs)
  File "C:\Users\me\AppData\Local\Continuum\anaconda3\envs\deeplearning\lib\site-packages\tensorflow_core\python\eager\function.py", line 2150, in _maybe_define_function
    graph_function = self._create_graph_function(args, kwargs)
  File "C:\Users\me\AppData\Local\Continuum\anaconda3\envs\deeplearning\lib\site-packages\tensorflow_core\python\eager\function.py", line 2041, in _create_graph_function
    capture_by_value=self._capture_by_value),
  File "C:\Users\me\AppData\Local\Continuum\anaconda3\envs\deeplearning\lib\site-packages\tensorflow_core\python\framework\func_graph.py", line 915, in func_graph_from_py_func
    func_outputs = python_func(*func_args, **func_kwargs)
  File "C:\Users\me\AppData\Local\Continuum\anaconda3\envs\deeplearning\lib\site-packages\tensorflow_core\python\eager\def_function.py", line 358, in wrapped_fn
    return weak_wrapped_fn().__wrapped__(*args, **kwds)
  File "C:\Users\me\AppData\Local\Continuum\anaconda3\envs\deeplearning\lib\site-packages\tensorflow_core\python\keras\engine\training_v2_utils.py", line 66, in distributed_function
    model, input_iterator, mode)
  File "C:\Users\me\AppData\Local\Continuum\anaconda3\envs\deeplearning\lib\site-packages\tensorflow_core\python\keras\engine\training_v2_utils.py", line 112, in _prepare_feed_values
    inputs, targets, sample_weights = _get_input_from_iterator(inputs)
  File "C:\Users\me\AppData\Local\Continuum\anaconda3\envs\deeplearning\lib\site-packages\tensorflow_core\python\keras\engine\training_v2_utils.py", line 149, in _get_input_from_iterator
    distribution_strategy_context.get_strategy(), x, y, sample_weights)
  File "C:\Users\me\AppData\Local\Continuum\anaconda3\envs\deeplearning\lib\site-packages\tensorflow_core\python\keras\distribute\distributed_training_utils.py", line 308, in validate_distributed_dataset_inputs
    x_values_list = validate_per_replica_inputs(distribution_strategy, x)
  File "C:\Users\me\AppData\Local\Continuum\anaconda3\envs\deeplearning\lib\site-packages\tensorflow_core\python\keras\distribute\distributed_training_utils.py", line 356, in validate_per_replica_inputs
    validate_all_tensor_shapes(x, x_values)
  File "C:\Users\me\AppData\Local\Continuum\anaconda3\envs\deeplearning\lib\site-packages\tensorflow_core\python\keras\distribute\distributed_training_utils.py", line 373, in validate_all_tensor_shapes
    x_shape = x_values[0].shape.as_list()
  File "C:\Users\me\AppData\Local\Continuum\anaconda3\envs\deeplearning\lib\site-packages\tensorflow_core\python\framework\tensor_shape.py", line 1171, in as_list
    raise ValueError("as_list() is not defined on an unknown TensorShape.")
ValueError: as_list() is not defined on an unknown TensorShape.

Process finished with exit code 1

任何帮助都值得赞赏。谢谢

2个回答

如果没有一个独立的示例进行测试,很难确定,但我认为问题很可能来自 tf.py_func 的使用,它可能缺少张量的形状信息。不过你在这里不需要它,我认为你可以将 map_examplemake_dataset 等效地定义为:

def map_example(height, width, image_raw, label):
    image_data = tf.io.decode_raw(image_raw, tf.uint8)
    image_data = tf.reshape(image_data, [1, height, width])
    return image_data, label

def make_dataset(partition):
    files = tf.data.Dataset.list_files("images_" + partition + "*.tfrecord")
    dataset = tf.data.TFRecordDataset(files)
    # dataset = dataset.shuffle(buffer_size=FLAGS.shuffle_buffer_size)
    dataset = dataset.map(decode_example)
    dataset = dataset.map(
        lambda x: map_example(x['height'], x['width'], x['image_raw'], x['label']))
    # dataset = dataset.batch(batch_size=FLAGS.batch_size)
    return dataset
javidcf
2019-11-19
def make_dataset(partition):
    files = tf.data.Dataset.list_files("images_" + partition + "*.tfrecord")
    dataset = tf.data.TFRecordDataset(files)
    # dataset = dataset.shuffle(buffer_size=FLAGS.shuffle_buffer_size)
    dataset = dataset.map(decode_example)
    dataset = dataset.map(
              lambda x: map_example(x['height'], x['width'], x['image_raw'], x['label']))

    dataset = dataset.batch(batch_size=FLAGS.batch_size)    

    it = dataset.__iter__() #missing line
    return it 

我也遇到了同样的问题,只需在返回之前添加 dataset.__iter__() (在训练集和测试集中都添加)。就这样。

Mohamed El Amine BELLEBNA
2022-07-03